首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33574篇
  免费   3091篇
  国内免费   1569篇
电工技术   458篇
综合类   1787篇
化学工业   14708篇
金属工艺   4485篇
机械仪表   575篇
建筑科学   1179篇
矿业工程   612篇
能源动力   1889篇
轻工业   4082篇
水利工程   268篇
石油天然气   1654篇
武器工业   140篇
无线电   964篇
一般工业技术   3454篇
冶金工业   1313篇
原子能技术   367篇
自动化技术   299篇
  2024年   77篇
  2023年   729篇
  2022年   918篇
  2021年   1271篇
  2020年   1230篇
  2019年   1161篇
  2018年   1067篇
  2017年   1177篇
  2016年   1170篇
  2015年   1159篇
  2014年   1693篇
  2013年   1985篇
  2012年   2040篇
  2011年   2360篇
  2010年   1739篇
  2009年   2054篇
  2008年   1728篇
  2007年   2134篇
  2006年   1941篇
  2005年   1708篇
  2004年   1366篇
  2003年   1222篇
  2002年   1007篇
  2001年   894篇
  2000年   741篇
  1999年   473篇
  1998年   437篇
  1997年   376篇
  1996年   375篇
  1995年   272篇
  1994年   247篇
  1993年   223篇
  1992年   206篇
  1991年   189篇
  1990年   152篇
  1989年   95篇
  1988年   67篇
  1987年   70篇
  1986年   64篇
  1985年   66篇
  1984年   56篇
  1983年   35篇
  1982年   58篇
  1981年   38篇
  1980年   35篇
  1979年   22篇
  1978年   24篇
  1977年   21篇
  1976年   17篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
62.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
63.
对炼油厂碱渣中酚含量和组成进行了分析,结果表明,碱渣酚含量较高,且含多种不同结构的酚,其中苯酚含量相对最高,达到60%左右。采用双氧水氧化苯酚的试验结果表明:双氧水氧化效果较差,苯酚去除率仅为0.5%;使用钛硅分子筛作催化剂,可大幅提高双氧水氧化苯酚的效果,最佳氧化条件下苯酚去除率高达94.7%,显示出钛硅分子筛优异的催化氧化作用。  相似文献   
64.
Perovskite oxides LaCoO_3 prepared by templating, co-precipitation and sol-gel method with different complexants were systematically characterized and its catalytic performances for CO oxidation were investigated. The samples were characterized by X-ray diffraction, thermogravimetry analysis and differential scanning calorimetry, N_2 physisorption, transmission electron microscopy, temperature program reduction of hydrogen, temperature program desorption of oxygen and X-ray photoelectron spectroscopy measurement, results of which show that the properties of LaCoO_3, such as surface morphology, surface area, surface compositions, redox capability, oxygen vacancy, as well as the calcination temperature and formation mechanism, depend intimately on the preparation method. Catalytic tests indicate that the sample prepared by carbon templating method shows the best activity for CO oxidation, with full CO conversion obtained at 135 ℃. In particular, the catalyst can be activated and significant increase of activity can be obtained with the increase of reaction time. The cyclic and longterm stability of catalysts were discussed and compared.  相似文献   
65.
Pravastatin is a promising drug utilized in the treatment of hyperlipidemia, yet, its main clinical limitation is due to gastric liability which fractions its oral bioavailability to less than 18%. The purpose of the current study is to encapsulate pravastatin into Eudragit®-based spray-dried microparticles aspiring to overcome its acid liability. With the aim to optimize the microparticles, formulation and process parameters were studied through acid resistance challenging test. Physicochemical characterization of the optimized spray-dried pH-sensitive microparticles namely; in-vitro dissolution, surface morphology, compatibility, and solid-state studies were performed. Moreover, in-vivo evaluation of the microparticles and accelerated stability studies were carried out. The results outlined that polymer to drug ratio at 5:1 and pravastatin concentration at 1%w/w in spray-drying feed solution showed 38.55% and 53.97% encapsulation efficiency, respectively. The significance of process parameters specifically; the flow rate and the inlet temperature on microparticles surface integrity were observed, and optimized until encapsulating efficiency reached 72.37%. The scanning electron microscopical examination of the optimized microparticles illustrate uniform smooth surface spheres entrapping the drug in an amorphous state as proved through Differential Scanning Calorimetry (DSC) and Fourier Transfer Infrared (FTIR) studies. The in-vivo evaluation demonstrated a 5-fold enhancement in pravastatin bioavailability compared to the marketed product. The results provided evidence for the significance of spray-dried pH-sensitive microparticles as a promising carrier for pravastatin, decreasing its acid liability, and improving its bioavailability.  相似文献   
66.
67.
Hexagonal boron nitride (h‐BN) coatings on Ti‐6Al‐4V substrates undergo complete decomposition in air at 900 °C. This fate is similar to that of this ceramic material on chromia‐former alloys, and unlike that of a mass of powder treated in isolation. As the ceramic and alloy oxidize concurrently, outwardly diffusing aluminum (III) ions but not the predominant titanium (IV) ions react with the boron trioxide that forms around the h‐BN basal plane peripheries. Resultant aluminum borate is incorporated into the growing scale and the boron trioxide diffusion barrier is depleted. By this mechanism, the oxidation of h‐BN is maintained at an enhanced rate, until both this material and its oxide completely decompose. Liberated nitrogen from the oxidation of h‐BN can enter the underlying scale as a randomly distributed solute in rutile solid solution. The post‐coating oxide‐atmosphere interface comprises elongated aluminum borate crystallites protruding through at the boundaries between 3–5 at% nitrogen‐doped rutile grains. It differs significantly from that of oxidized, uncoated Ti‐6Al‐4V, which is occupied by a thin α‐alumina layer atop rutile. This interface does not change with an additional 72 h of heat‐treatment.  相似文献   
68.
69.
70.
??In order to reduce the oxidative burning loss of Fe78Si9B13 amorphous ribbon in the recovery process?? the oxidation behavior of Fe78Si9B13 amorphous ribbon was studied. The results show that the oxidation of Fe78Si9B13 amorphous ribbon at high temperature is related to the heating rate. The oxidation weight gain of Fe78Si9B13 amorphous ribbon at 5 and 10K/min from room temperature to 1223K are 44% and 31% respectively. There is an oxide layer with loose texture and a small amount of microcrack at the interface between the sample and atmosphere by SEM. The oxide layer contains a large amount of Fe2O3 and a little SiO2 by XRD. Oxidation kinetics curve shows that the oxidation weight gain of the samples follows a linear rule within 5hours at 1073 and 1173K?? then a parabolic rule. At 1273K?? however?? it only follows a linear rule?? meanwhile the oxidation speed is very fast?? with the oxidation weight gain reaches 40% in 12min. The oxidation weight gain in the amorphous ribbon recycling process can be reduced through cutting down the furnace gas temperature?? compressing the waste ribbon and unqualified products in the packaging process and blowing argon to reduce the partial pressure of oxygen in the furnace. Thus the slag decreases to 9-10g when 1kg waste ribbon is recovered?? and the Si content of liquid alloy increases to 8. 9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号